Fusions involving BCOR and CREBBP are rare events in infiltrating glioma.

TitleFusions involving BCOR and CREBBP are rare events in infiltrating glioma.
Publication TypeJournal Article
Year of Publication2020
AuthorsPisapia DJ, Ohara K, Bareja R, Wilkes DC, Hissong E, Croyle JA, Kim J-H, Saab J, MacDonald TY, Beg S, O'Reilly C, Kudman S, Rubin MA, Elemento O, Sboner A, Greenfield J, Mosquera JMiguel
JournalActa Neuropathol Commun
Volume8
Issue1
Pagination80
Date Published2020 06 03
ISSN2051-5960
Abstract

BCOR has been recognized as a recurrently altered gene in a subset of pediatric tumors of the central nervous system (CNS). Here, we describe a novel BCOR-CREBBP fusion event in a case of pediatric infiltrating astrocytoma and further probe the frequency of related fusion events in CNS tumors. We analyzed biopsy samples taken from a 15-year-old male with an aggressive, unresectable and multifocal infiltrating astrocytoma. We performed RNA sequencing (RNA-seq) and targeted DNA sequencing. In the index case, the fused BCOR-CREBBP transcript comprises exons 1-4 of BCOR and exon 31 of CREBBP. The fused gene thus retains the Bcl6 interaction domain of BCOR while eliminating the domain that has been shown to interact with the polycomb group protein PCGF1. The fusion event was validated by FISH and reverse transcriptase PCR. An additional set of 177 pediatric and adult primary CNS tumors were assessed via FISH for BCOR break apart events, all of which were negative. An additional 509 adult lower grade infiltrating gliomas from the publicly available TCGA dataset were screened for BCOR or CREBBP fusions. In this set, one case was found to harbor a CREBBP-GOLGA6L2 fusion and one case a CREBBP-SRRM2 fusion. In a third patient, both BCOR-L3MBTL2 and EP300-BCOR fusions were seen. Of particular interest to this study, EP300 is a paralog of CREBBP and the breakpoint seen involves a similar region of the gene to that of the index case; however, the resultant transcript is predicted to be completely distinct. While this gene fusion may play an oncogenic role through the loss of tumor suppressor functions of BCOR and CREBBP, further screening over larger cohorts and functional validation is needed to determine the degree to which this or similar fusions are recurrent and to elucidate their oncogenic potential.

DOI10.1186/s40478-020-00951-4
Alternate JournalActa Neuropathol Commun
PubMed ID32493417
PubMed Central IDPMC7271411