For COVID-19 vaccine updates, please review our information guide. For patient eligibility and scheduling availability, please visit

Predictors of postoperative motor function in rolandic meningiomas.

TitlePredictors of postoperative motor function in rolandic meningiomas.
Publication TypeJournal Article
Year of Publication2018
AuthorsOttenhausen M, Rumalla K, Younus I, Minkowitz S, Tsiouris AJohn, Schwartz TH
JournalJ Neurosurg
Date Published2018 May 01

OBJECTIVEResection of supratentorial meningiomas is generally considered a low-risk procedure, but tumors involving the rolandic cortex present a unique challenge. The rate of motor function deterioration associated with resecting such tumors is not well described in the literature. Thus, the authors sought to report the rates and predictors of postoperative motor deficit following the resection of rolandic meningiomas to assist with patient counseling and surgical decision-making.METHODSAn institution's pathology database was screened for meningiomas removed between 2000 and 2017, and patients with neuroradiological evidence of rolandic involvement were identified. Parameters screened as potential predictors included patient age, sex, preoperative motor severity, tumor location, tumor origin (falx vs convexity), histological grade, FLAIR signal (T2-weighted MRI), venous involvement (T1-weighted MRI with contrast), intratumoral hemorrhage, embolization, and degree of resection (Simpson grade). Variables of interest included preoperative weakness and postoperative motor decline (novel or worsened permanent deficit). The SPSS univariate and bivariate analysis functions were used, and statistical significance was determined with alpha < 0.05.RESULTSIn 89 patients who had undergone resection of convexity (80.9%) or parasagittal (19.1%) rolandic meningiomas, a postoperative motor decline occurred in 24.7%. Of 53 patients (59.6%) with preoperative motor deficits, 60.3% improved, 13.2% were unchanged, and 26.4% worsened following surgery. Among the 36 patients without preoperative deficits, 22.2% developed new weakness. Predictors of preoperative motor deficit included tumor size (41.6 vs 33.2 cm3, p = 0.040) and presence of FLAIR signal (69.8% vs 50.0%, p = 0.046). Predictors of postoperative motor decline were preoperative motor deficit (47.2% vs 22.2%, p = 0.017), minor (compared with severe) preoperative weakness (25.6% vs 21.4%, p < 0.001), and preoperative embolization (54.5% vs 20.5%, p = 0.014). Factors that trended toward significance included parafalcine tumor origin (41.2% vs 20.8% convexity, p = 0.08), significant venous involvement (44.4% vs 23.5% none, p = 0.09), and Simpson grade II+ (34.2% vs 17.6% grade I, p = 0.07).CONCLUSIONSResection of rolandic area meningiomas carries a high rate of postoperative morbidity and deserves special preoperative planning. Large tumor size, peritumoral edema, preoperative embolization, parafalcine origin, and venous involvement may further increase the risk. Alternative surgical strategies, such as aggressive internal debulking, may prevent motor decline in a subset of high-risk patients.

Alternate JournalJ Neurosurg
PubMed ID29799346